

FC370 SERIES

Server Boards

for

Density Series Systems

User's Guide

Cubix Corp. Headquarters: 2800 Lockheed Way, Carson City NV 89706-0719 Tel (775) 888-1000•Fax (775) 888-1001•Customer Service (800) 829-0550

European Office: Geddes House Business Centre Kirkton North, Livingston, Scotland EH54 6GU Tel 01506 465065•Fax 01506 465430 International + 44 1506 46505 • Customer Service 0800 591 887

Cubix Web Site : http://www.cubix.com

Notice

Cubix Corporation reserves the right to revise this documentation and to change content from time to time without obligation on the part of Cubix Corporation to provide notification of such revision or change. Additionally, Cubix Corporation assumes no responsibility for its use and provides this documentation without warranty of any kind, either implied or expressed. Cubix Corporation may make improvements or changes in the product(s) and/or program(s) described in this documentation at any time.

All product names mentioned in this document are trademarks or registered trademarks of their respective owners.

Mention of third-party products is for informational purposes only and is not to be considered an endorsement or recommendation. Cubix Corporation assumes no responsibility for the performance of these products.

CopyrightÓ 2000 by Cubix Corporation All Rights Reserved Printed in the U.S.A. FC370 Series Server Boards User's Guide Doc. #0890

FC370 Series Server Board's User's Guide Table of Contents

Chapter 1 – Introduction

Introduction	1
Overview	2

Chapter 2 - The FC370-674X Board

Switch One (S1) Settings	3-4
Jumper Settings	
DIMM Memory Installation	6-7
Ethernet Adapter LEDs	7
Other LEDs (POST Display, Board Power & SCSI Activity)	8
Memory Configuration & Interrupts	8-10
Technical Specifications	11

Chapter 3 – The FC370-675X Board

Switch One (S1) Settings	12
Jumper Settings	
DIMM Memory Installation	
Ethernet Adapter LEDs	17
Other LEDs (POST Display, Board Power & SCSI Activity)	17-18
Memory Configuration & Interrupts	
Technical Specifications	21

Chapter 4 – Warnings and Board Installation Procedures

Warnings	
Procedures	
Appendix A – Customer Service Information	

List of Figures

Figure 1	Density Series System	1
Figure 2	FC370-674 Board Layout	2
Figure 3	FC370-675 Board Layout	
Figure 4	End Bracket for FC370-674X	7
Figure 5	Configuration for Use of External SCSI Devices	16
Figure 6	End Bracket for FC370-675X	17
Figure 7	Inserting Server Board into Chassis Group	23

List of Tables

FC370-674X Board

Table 1	S1 Switch Settings	. 4
Table 2	Ethernet/Jumper Settings for JP1 and JP2	. 4
Table 3	Write Enable/Flash BIOS/Jumper Settings for JP3	. 5
Table 4	CMOS Memory Clear/Jumper Settings for JP4	. 5
Table 5	IES Interrupt on IRQ10/Jumper Settings for JP5	. 6
Table 6	Enable/Disable SCSI Controller/Jumper Settings for SJP1	. 6
Table 7	Memory Map	. 8
Table 8	I/О Мар	. 9
Table 9	System Interrupts	10
Table 10) Technical Specifications	11

FC370-675X Board

Table 11	S1 Switch Settings	12
Table 12	Ethernet/Jumper Settings for JP1 and JP5	13
Table 13	CMOS Memory Clear/Jumper Settings for JP2	13
Table 14	Write Enable/Flash BIOS/Jumper Settings for JP3	14
Table 15	IES Interrupt on IRQ10/Jumper Settings for JP4	14
Table 16	Enable/Disable SCSI Controller/Jumper Settings for SJP1.	15
Table 17	Memory Map	18
Table 18	I/O Мар	19
Table 19	System Interrupts	20
Table 20	Technical Specifications	21

FC370 Series Server Boards <u>User's Guide</u> Chapter 1 – Introduction

The Cubix Density Series System houses multiple server-class Intel® compatible computers neatly and efficiently in a single rack-mountable drawer (see Figure 1). The Density Series System is designed for the purpose of computer consolidation. Cubix equipment solves the problems associated with space-constrained backroom computing centers.

Cubix versatile new FC370 series boards are Density processor boards which support both Pentium [®] III or Celeron processors. The FC370 server board can plug into any one of the independent groups on a Density backplane. ("group" refers to a segment of slots within the backplane that will accommodate a Density processor board and peripheral third party card(s), which comprise the server-class system.) As many as eight of the new FC370 series boards, with either the Pentium [®] III or Celeron processors, can be installed in a Density, giving you the maximum power and performance you may require for your application needs.

This *User's Guide* provides switch and jumper settings, the steps necessary for proper installation of the board and information regarding the technical specifications of the FC370 series boards.

Figure 1 Density Series System

OVERVIEW

There are two FC370 series boards presented in this manual, the FC370-674X and the FC370-675X. Both boards support the Pentium ® III or the Celeron processors. The Pentium ® III processor has a processor speed of up to 800Mhz. Both boards use a 100Mhz front side bus for the Pentium ® III, and switch to 66MHz for the Celeron processor. Dual Ethernet ports are also integrated on these boards.

Once installed in a Cubix Density System, each FC370 series board becomes an independent computer. The system multiplexor allows all Density computers in a chassis to share a single floppy disk drive and CD-ROM drive. The monitor, mouse and keyboard may be shared between computers and multiple chassis (up to 8 chassis).

Both FC370 series computer boards include on-board video, two serial ports, one parallel port, keyboard and mouse support, memory and floppy drive support. Also included are two integrated Ethernet controllers each with 10/100 Base-TX connectors. Both boards support PCI and ISA expansion slots.

The FC370-674X has an integrated Wide Ultra2 SCSI controller with Single-Ended or Low Voltage Differential (LVD) support to an internal SCSI connector. The board layout is pictured in Figure 2.

The FC370-675X has an internal Ultra ATA/33 (EIDE) 48 pin mini-DIN connector and, as an option, an external integrated Wide Ultra2 SCSI cable connector (68-pin). The board layout is pictured in Figure 3.

FC370 Series Server Boards User's Guide

Figure 3 FC370-675X Board Layout

Chapter 2 – The FC370-674X Board

Switch 1 (S1) Settings

S1 – Position 1

The FC370-674X board comes equipped with a 2 position DIP switch for reset control. Position 1 is for data set ready (DSR). If position 1 is set in the "on" position (the "on" and "off" positions are designated by an arrow clearly marked on the switch), the FC370-674X board will reset the CPU on loss of data set ready. The factory default setting for S1, position 1, is in the "off" position.

S1 – Position 2

S1, position 2, is for data carrier detect (DCD). If position 2 is set in the "on" position, the FC370-674X board will reset the CPU when there is a loss of carrier. The factory default setting for S1, position 2, is in the "off" position. See Figure 2 for Switch 1 (S1) location.

Table 1 defines the switch positions for S1.

Function of Reset Control Switch (S1)	1	2
Reset on Loss of DSR	On	
Do Not Reset on Loss of DSR	Off	
Reset on Loss of DCD		On
Do Not Reset on Loss of DCD		Off
Factory Settings	Off	Off

Table 1 S1 Switch Settings

Jumper Settings

JP1 and JP2 – On-Board Ethernet Controller/Jumper Settings

The board is equipped with two integrated Intel® 82559 PCI fast Ethernet controllers, each with RJ-45 10/100 BASE TX connectors on the mounting bracket at the rear of the board. The I/O addresses and interrupts are set by the PCI plug and play BIOS at boot time. The controllers are enabled or disabled via jumpers JP1 and JP2 (see Figure 2 for jumper locations).

JP1 corresponds to the top Ethernet controller and the top Ethernet. JP2 corresponds to the bottom Ethernet controller and bottom Ethernet port. For unique situations requiring the disabling of the Ethernet controllers, JP1 and JP2 are incorporated onto the FC370-674X board.

Table 2 defines the jumper settings for JP1 and JP2.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
JP1	Ethernet	Enabled	Disabled
JP2	Ethernet	Enabled	Disabled

 Table 2
 Ethernet Jumper Settings for JP1 and JP2

JP3 – Flash Bios Enable

If the Flash Bios is to be upgraded, a shunt must be installed on the 2-pin jumper JP3 (see figure 2 for JP3 location). Upgrades typically come on a floppy disc and are accompanied by upgrade instructions.* When the upgrade is complete, the shunt should be removed to protect the system from accidental erasure.

DOC 0890

Table 3 defines the jumper settings for JP3.

Table 5 Write Enable/ Idan Blob Sumper Settings for 515			
Jumper	Function	Jumper On	Jumper Off
JP3	Flash Write Enable	Enabled	Disabled

Table 3 Write Enable/Flash BIOS Jumper Settings for JP3

*Cubix provides Flash Bios upgrades via the Cubix web site. The web site address is provided in Appendix A of this manual.

JP4 – CMOS Memory Clear

The CMOS memory can be cleared by using JP4 (see Figure 2 for JP4 location). This memory controls the maintenance and storage of three sets of information: (1) the date and time generated and displayed on the computer screen; (2) the peripheral setup, i.e. programming base register for the chip sets; and (3) the password necessary for entry.

The first two sets of information can be changed during boot-up by following specific directions displayed on the computer screen at the time the computer boots up. The CMOS memory will automatically update and store the new information input. However, if setup cannot be entered the normal way, CMOS memory clear (JP4) is the recovery mechanism which can be used. Or, if password information has been lost, the CMOS memory will need to be cleared so the information can be updated before program entry is possible.

To clear CMOS memory, the jumper on JP4 must be removed from pins 1 and 2, and placed on pins 2 and 3. After clearing, the jumper must be reinstalled on jumper pins 1 and 2 before updates can be made.

Table 4 defines the jumper settings for JP4.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
JP4	CMOS Clear	Normal	CMOS Clear

Table 4 CMOS Clear Jumper Settings for JP4

JP5 – IES Interrupt on IRQ10

The IES module communicates with the FC370-674X processor in the subsystem via a hardware interrupt which is IRQ10. The supervisory interrupt is enabled with JP5 by placing the jumper on pins 2 and 3. If the FC370-674X board is part of the GlobalVision network, supervisory interrupt is necessary and IES Interrupt must be enabled. If this board is not part of the GlobalVision network, IES Interrupt can be disabled with JP5 by removing the jumper from DOC 0890 Page 5

pins 2 and 3, and placing the jumper on pins 1 and 2. The factory default setting for JP5 is in "disabled" status, unless otherwise specified at the time of purchase.

Table 5 defines the jumper settings for JP5.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
JP5	IES Interrupt on IRQ10	Enabled	Disabled

Table 5 Enable/Disable IES Interrupt Jumper Settings for JP5

Symbios SCSI Controller/Jumper Settings

The FC370-674X board has an integrated Wide Ultra2 SCSI controller with Single-Ended or Low Voltage Differential (LVD) support to an internal SCSI connector. The controller is enabled or disabled via a hardware jumper SJP1. (The "S" preceding the "JP" designates the jumper is specific to SCSI functions.)

The SCSI controller is a bus master device which gains control of the PCI bus to transfer data between the CPU memory and the SCSI devices. The I/O base address and interrupts are set by the PCI plug and play BIOS at boot time.

SJP1 – Enable/Disable SCSI Controller

As stated above, the on-board Symbios Wide Ultra2 SCSI controller can be enabled or disabled with SJP1 (see Figure 2 for SJP1 location).

Table 6 defines the jumper settings for SJP1.

Jumper Function		Jumper On Pins 1-2	Jumper On Pins 2-3		
SJP1	SCSI	Enabled	Disabled		

Table 6 SCSI Jumper Settings for SJP1

DIMM MEMORY INSTALLATION

Additional memory can be installed on the FC370-674X board. There are two DIMM slots available on this board (see Figure 2 for DIMM slot locations). If only one DIMM is installed, this DIMM should be installed in DIMM 0 (J5). The sequence of DIMM installation relative to DIMM size is not important. DIMMs must be PC-100 compliant.

For installation, the card interface tabs must be aligned. Firmly seat the DIMM(s) into place.

Please note the following information regarding DIMMs.

- DIMMs are 168 pin, 100MHz (PC100) ECC SDRAM (72 bits).
- DIMMs do not need to be installed in pairs and different sizes may be mixed.
- DIMMs may be either registered or unbuffered. Registered and unbuffered DIMMs may not be mixed.
- DIMMs must have gold contacts (edge connectors).

FC370-674X Board Information and Technical Specifications

ETHERNET ADAPTER LEDs

On each RJ-45 connector and visible in the mounting bracket is a set of light emitting diodes (LEDs). Figure 4 displays the FC370-674X end bracket.

On the upper LED:

• When the upper LED is green and blinking, this indicates a link to an Ethernet hub and that when blinking, there is activity.

On the lower LED:

• When the lower LED is green, this indicates the interface is set to 100 Mbit/s.

OTHER LEDs

POST Display

The FC370-674X board has a group of eight LEDs arranged to the right of the SCSI connector (SJ1) and SCSI Activity LED (see Figure 2 for POST LED location). As the system proceeds through its Power On System Test (POST) these LEDs display binary codes which can be used to diagnose board failures. Refer to the <u>AMIBIOS POST Checkpoint Codes</u> (Doc. #0882) for detailed POST code information, or check the Cubix website:

http://www.cubix .com

FC370-674X Board Power LED

There is a Board Power LED located on the FC370-674X board to the left of the LPT connector (J4) (see Figure 2 for Board Power LED location). This LED light will be green when there is power to the board. This LED is only visible when the cover is off the Density System.

SCSI Activity LED

There is a SCSI Activity LED between the SCSI connector (SJ1) and the POST LEDs. This light will be amber when the SCSI is busy and is only visible when the cover is off the Density System.

MEMORY CONFIGURATION & INTERRUPTS

Table 7 shows the Memory map for the processor.

Memory Range	Size	Use			
00000-9FFFF	640KB	Conventional Memory			
A0000-AFFFF	64KB	VGA Graphics Buffer			
B0000-B7FFF	32KB	MDA Text Buffer			
B8000-BFFFF	32KB	VGA/CGA Text Buffer			
C0000-C7FFF	32KB	VGA Bios			
C8000-DFFFF	96KB	Available			
E0000-FFFFF	128KB	System & PCI BIOS			

Table 7 Memory Map

Table 8 defines the FC370-674X board's I/O configuration.

ISA Ports	Description			
0000-00FF	Various "AT" functions in ISP chip and keyboard controller			
01F0-01F7	IDE hard drive interface			
02F8-02FF	COM2			
03A0	Cubix supervisory interface			
03A8-03AF	IES serial port			
03B4-03B5	VGA			
03BC-03BF	LPT1			
03C0-03CF	VGA			
03D4-03D5	VGA			
03F0-03F7	Floppy / IDE			
03F8-03FF	COM1			

Table 8 I/O Map

System Interrupts

The 16 system hardware interrupts on the FC370-674X are represented in Table 9.

Interrupts are managed by two standard 8259A Programmable Interrupt Controllers (PICs) integrated into the chipset. Interrupts at IRQ 0 through 7 are located on the main PIC; IRQ 8 through 15 are on the SLAVE PIC.

Table 9 defines the system interrupts on the FC370-674X board.

IRQ	Description	IRQ	Description		
0	Timer clock	8	Real Time Clock		
1	Keyboard	9	Redirected IRQ 2, Set By PCI Plug & Play at Boot Time		
2	Second PIC controller	10	Reserved for IES (Factory Default, see JP4)		
3	COM2	11	Set By PCI Plug & Play at Boot Time		
4	COM1	12	Available (or PS/2 Mouse)		
5	Set By PCI Plug & Play at boot time	13	Math Coprocessor		
6	Floppy Disk Controller	14	Available		
7	LPT1	15	Secondary IDE Controller (CD-ROM)		

Table 9 System Interrupt

TECHNICAL SPECIFICATIONS

Table 10 represents the technical specifications for the Density FC370-674X Series board.

Table 10 Technical Specifications for Density FC370-674X Series BoardCPU – CentralIntel® Pentium® III 800MHz orProcessing UnitIntel® Celeron 500MHzL2 Cache256KB Full Speed on the Pentium® III

L2 Cache	256KB Full Speed on the Pentium® III			
	128KB Full Speed on the Celeron			
	(Processor Dependent)			
System Chip Set	440BX PIIX 4E			
System Memory				
Speed	PC-100 SDRAM			
Width	72 Bits ECC			
Max Size	512MB, 2 – 256KB DIMMS			
Туре	Unbuffered or Registered, DO NOT MIX			
Peripheral Bus Support	PCI or ISA			
System BIOS	AMI BIOS			
Super I/O	SMC 37M812			
Serial/Assignment	COM1 (J11), COM2 (J3)			
UART Type	16C550 Compatible 230 Kbps Maximum			
Parallel/Assignment	LPT 1 (J4), all Standard Modes			
Dual On-Board LAN	RJ-45 10/100 Base TX, Intel®82559			
Interface				
VGA Chip Set	S3 Trio 3D/2X, 4MB Video RAM			
SCSI Chip Set	Wide Ultra2 SCSI Symbios 53C895 with Low			
	Voltage Differential or Single-Ended SCSI			
	support (internal connector only)			
Max Transfer Rate	Single-Ended 40MB, LVD 80MB			
Other Input/Output	Video/Keyboard/Mouse – (J2) Internal			
	Header			
Power Requirements*	Volts Amps Max Power Max			
*Deservet in shude a surray	+5VDC 7.6A			
*Does not include power	+12VDC 0.25A 41.6W			
for IDE Hard Drive	-12VDC 0.05A			
Warranty	Parts and Labor Return to Manufacturer			
	3 yrs.			

Chapter 3 – The FC370-675X Board

Switch 1 (S1) Settings S1 – Position 1

The FC370-675X board comes equipped with a 2 position DIP switch for reset control. Position 1 is for data set ready (DSR). If position 1 is set in the "on" position (the "on" and "off" positions are designated by an arrow clearly marked on the switch), the FC370-674X board will reset the CPU on loss of data set ready. The factory default setting for S1, position 1, is in the "off" position.

S1 – Position 2

S1, position 2, is for data carrier detect (DCD). If position 2 is set in the "on" position, the FC370-674X board will reset the CPU when there is a loss of carrier. The factory default setting for S1, position 2, is in the "off" position. See Figure 3 for Switch 1 (S1) location.

Table 11 defines the switch positions for S1.

Table 11 S1 Switch Settings	
-----------------------------	--

Function of Reset Control Switch (S1)	1	2
Reset on Loss of DSR	On	
Do Not Reset on Loss of DSR	Off	
Reset on Loss of DCD		On
Do Not Reset on Loss of DCD		Off
Factory Settings	Off	Off

Jumper Settings

JP1 and JP5 – On-Board Ethernet Controller/Jumper Settings

The board is equipped with two integrated Intel® 82559 PCI fast Ethernet controllers each with RJ-45 10/100 BASE TX connectors on the mounting bracket at the rear of the board. The I/O addresses and interrupts are set by the PCI plug and play BIOS at boot time. The controllers are enabled or disabled via jumpers JP1 and JP5 (see Figure 3 for jumper locations).

JP1 corresponds to the top Ethernet controller and the top Ethernet. JP5 corresponds to the bottom Ethernet controller and bottom Ethernet port. For unique situations requiring the disabling of the Ethernet controllers, JP1 and JP5 are incorporated onto the FC370-675X board.

Table 12 defines the jumper settings for JP1 and JP5.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
JP1	Ethernet	Enabled	Disabled
JP5	Ethernet	Enabled	Disabled

Table 12 Ethernet Jumper Settings for JP1 and JP5

JP2 – CMOS Memory Clear

The CMOS memory can be cleared by using JP2 (see Figure 3 for JP2 location). This memory controls the maintenance and storage of three sets of information: (1) the date and time generated and displayed on the computer screen; (2) the peripheral setup, i.e. programming base register for the chip sets; and (3) the password necessary for entry.

The first two sets of information can be changed during boot-up by following specific directions displayed on the computer screen at the time the computer boots up. The CMOS memory will automatically update and store the new information input. However, if setup cannot be entered the normal way, CMOS memory clear (JP2) is the recovery mechanism which can be used. Or, if password information has been lost, the CMOS memory will need to be cleared so the information can be updated before program entry is possible.

To clear CMOS memory, the jumper on JP2 must be removed from pins 1 and 2, and placed on pins 2 and 3. After clearing, the jumper must be reinstalled on jumper pins 1 and 2 before updates can be made. Table 13 defines the jumper settings for JP2.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3	
JP2	CMOS Clear	Normal	CMOS Clear	

Table 13	CMOS	Clear	Jumper	Settings	for JP2
----------	------	-------	--------	----------	---------

JP3 – Flash Bios Enable

If the Flash Bios is to be upgraded, a shunt must be installed on the 2-pin jumper JP3 (see figure 3 for JP3 location). Upgrades typically come on a floppy disc and are accompanied by upgrade instructions.* When the upgrade is complete, the shunt should be removed to protect the system from accidental erasure.

Table 14 defines the jumper settings for JP3.

Jumper	Function	Jumper On	Jumper Off
JP3	Flash Write Enable	Enabled	Disabled

Table 14	Write Enable/Flash	BIOS Jumpe	r Settinas for JP3

*Cubix provides Flash Bios upgrades via the Cubix web site. The web site address is provided in Appendix A of this manual.

JP4 – IES Interrupt on IRQ10

The IES module communicates with the FC370-675X processor in the subsystem via a hardware interrupt which is IRQ10. The supervisory interrupt is enabled with JP4 by placing the jumper on pins 2 and 3. If the FC370-675X board is part of the GlobalVision network, supervisory interrupt is necessary and IES Interrupt must be enabled. If this board is not part of the GlobalVision network, IES Interrupt can be disabled with JP4 by removing the jumper from pins 2 and 3, and placing the jumper on pins 1 and 2. The factory default setting for JP4 is in "disabled" status, unless otherwise specified at the time of purchase.

Table 15 defines the jumper settings for JP4.

 Table 15 Enable/Disable IES Interrupt Jumper Settings for JP4

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
JP4	IES Interrupt on IRQ10	Enabled	Disabled

Symbios SCSI Controller/Jumper Settings

The FC370-675X board comes equipped to support an internal IDE drive. However, for applications that require external SCSI devices, an integrated Wide Ultra2 SCSI controller (Symbios 53C895) and an external SCSI cable connector (68-pin) can be ordered as an option. This SCSI controller supports both LVD and Single-Ended SCSI devices. The controller is enabled or disabled via a hardware jumper SJP1. (The "S" preceding the "JP" designates the jumper is specific to SCSI functions.)

The SCSI controller is a bus master device which gains control of the PCI bus to transfer data between the CPU memory and the SCSI devices. The I/O base address and interrupts are set by the PCI plug and play BIOS at boot time.

If the SCSI controller is ordered, a SCSI configuration utility is available on bootup of the board. Shortly after the SCSI BIOS information displays, the configuration program can be accessed by pressing "Control C". The configuration utility will allow you to scan the SCSI bus, change configuration options and view a list of SCSI devices connected to the board.

SJP1 – Enable/Disable SCSI Controller

As stated above, the on-board Symbios Wide Ultra2 SCSI controller can be enabled or disabled with SJP1 (see Figure 3 for SJP1 location).

Table 16 defines the jumper settings for SJP1.

Jumper	Function	Jumper On Pins 1-2	Jumper On Pins 2-3
SJP1	SCSI	Enabled	Disabled

Table 16 SCSI Jumper Settings for SJP1

The SCSI controller supports up to 15 external SCSI hard drives, either Ultra2 LVD SCSI or Single-Ended Wide SCSI devices. Consult the owner's manual pertaining to the external SCSI device for instructions on how to terminate. The end of the SCSI chain **must be terminated** independent of whether drives are Single-Ended or LVD.

Figure 5 demonstrates SCSI termination enabled on the FC370-675X board, and termination of the external SCSI device at the end of the SCSI chain.

DIMM MEMORY INSTALLATION

Additional memory can be installed on the FC370-675X board. There are two DIMM slots available on this board (see Figure 3 for DIMM slot locations). If only one DIMM is installed, this DIMM should be installed in DIMM 0 (J5). The sequence of DIMM installation relative to DIMM size is not important. DIMMs must be PC-100 compliant.

For installation, the card interface tabs must be aligned. Firmly seat the DIMM(s) into place.

Please note the following information regarding DIMMs.

- DIMMs are 168 pin, 100MHz (PC100) ECC SDRAM (72 bits).
- DIMMs do not need to be installed in pairs and different sizes may be mixed.
- DIMMs may be either registered or unbuffered. Registered and unbuffered DIMMs may not be mixed.
- DIMMs must have gold contacts (edge connectors).

Board Information and Technical Specifications

ETHERNET ADAPTER LEDs

On each RJ-45 connector and visible in the mounting bracket is a set of light emitting diodes (LEDs). Figure 6 displays the FC370-675X end bracket.

On the upper LED:

 When the upper LED is green and blinking, this indicates a link to an Ethernet hub and that when blinking, there is activity.

On the lower LED:

• When the lower LED is green, this indicates the interface is set to 100 Mbit/s.

OTHER LEDs

POST Display

The FC370-675X board has a group of eight LEDs arranged in the upper lefthand corner of the board, above the IDE connector (J9). As the system proceeds through its Power On System Test (POST) these LEDs display binary codes which can be used to diagnose board failures. Refer to the <u>AMIBIOS</u> <u>POST Checkpoint Codes</u> (Doc. #0882) for detailed POST code information, or check the Cubix website:

http://www.cubix .com

FC370-675X Board Power LED

There is a Board Power LED located on the FC370-675X to the right of the COM2 (J3) connector (see Figure 3 for Board Power LED location). This LED light will be green when there is power to the board. This LED is only visible when the cover is off the Density System.

SCSI Activity LED

There is a SCSI Activity LED on the <u>back side</u> of the FC370-675X board. This LED will be amber when the SCSI is busy. The SCSI Activity LED is located to the rear of the board, close to the Ethernet Enable Jumper (JP1) legend, and is only visible when the cover is off the Density System.

MEMORY CONFIGURATION & INTERRUPTS

Table 17 shows the Memory map for the FC370-675X board processor.

· · · · · · · · · · · · · · · · · · ·			
Memory Range	Size	Use	
00000-9FFFF	640KB	Conventional Memory	
A0000-AFFFF	64KB	VGA Graphics Buffer	
B0000-B7FFF	32KB	MDA Text Buffer	
B8000-BFFFF	32KB	VGA/CGA Text Buffer	
C0000-C7FFF	32KB	VGA Bios	
C8000-DFFFF	96KB	Available	
E0000-FFFFF	128KB	System & PCI BIOS	

Table 17 Memory Map

Table 18 defines the board's I/O configuration.

ISA Ports	Description
0000-00FF	Various "AT" functions in ISP chip and keyboard controller
01F0-01F7	IDE hard drive interface
02F8-02FF	COM2
03A0	Cubix supervisory interface
03A8-03AF	IES serial port
03B4-03B5	VGA
03BC-03BF	LPT1
03C0-03CF	VGA
03D4-03D5	VGA
03F0-03F7	Floppy / IDE
03F8-03FF	COM1

Table 18 I/O Map

System Interrupts

The 16 system hardware interrupts on the FC370-675X board are represented in Table 19.

Interrupts are managed by two standard 8259A Programmable Interrupt Controllers (PICs) integrated into the chipset. Interrupts at IRQ 0 through 7 are located on the main PIC; IRQ 8 through 15 are on the SLAVE PIC.

Table 19 defines the system interrupts on the FC370-675X board.

IRQ	Description	IRQ	Description
0	Timer clock	8	Real Time Clock
1	Keyboard	9	Redirected IRQ 2, Set By PCI Plug & Play at Boot Time
2	Second PIC controller	10	Reserved for IES (Factory Default, see JP4)
3	COM2	11	Set By PCI Plug & Play at Boot Time
4	COM1	12	Available (or PS/2 Mouse)
5	Set By PCI Plug & Play at boot time	13	Math Coprocessor
6	Floppy Disk Controller	14	Primary IDE
7	LPT1	15	Secondary IDE Controller (CD-ROM)

Table 19 System Interrupts

TECHNICAL SPECIFICATIONS

Table 20 represents the technical specifications for the Density FC370-675X series board.

	Specifications for Density FC370-675X Board			
CPU – Central	Intel® Pentium® III 800MHz or			
Processing Unit	Intel® Celeron 500MHz			
L2 Cache	256KB Full Speed on the Pentium® III			
	128KB Full Speed on the Celeron			
	(Processor Dependent)			
System Chip Set	440BX PIIX 4E			
System Memory				
Speed	PC-100 SDRAM			
Width	72 Bits ECC			
Max Size	512MB, 2 – 256KB DIMMS			
Туре	Unbuffered or Registered, DO NOT MIX			
Peripheral Bus Support	PCI or ISA			
System BIOS	AMI BIOS			
Super I/O	SMC 37M812			
Serial/Assignment	COM1 (J11), COM2 (J3)			
UART Type	16C550 Compatible 230 Kbps Maximum			
Parallel/Assignment	LPT 1 (J4), all Standard Modes			
Dual On-Board LAN	RJ-45 10/100 Base TX, Intel®82559			
Interface				
VGA Chip Set	S3 Trio 3D/2X, 4MB Video RAM			
SCSI Chip Set	Wide Ultra2 SCSI Symbios 53C895 with Low			
	Voltage Differential or Single-Ended SCSI			
	support (external connector only)			
Max Transfer Rate	Single-Ended 40MB, LVD 80MB			
Other Input/Output	Video/Keyboard/Mouse – (J2) Internal			
	Header			
Power Requirements*	Volts Amps Max Power Max			
	+5VDC 7.6A			
*Does not include power	+12VDC 0.25A 41.6W			
for IDE Hard Drive	-12VDC 0.05A			
Warranty	Parts and Labor Return to Manufacturer			
	3 yrs.			

Table 20 Technical Specifications for Density FC370-675X Board

Chapter 4 - Warnings and Board Installation Procedures

WARNINGS

The installation of all processor boards requires entry into the CPU bay of the Density Series system which is restricted to qualified service personnel only. Accordingly, the following warnings apply.

CAUTION! CONTAINS HAZARDOUS VOLTAGES NO USER SERVICEABLE PARTS

ATTENTION! TENSION DANGEREUSE, L'APPAREIL NE COMPORTE AUUN ELEMENT QUE L'UTILISATEUR PULSSE REPARER

ACHTUNG! GEFAHRLICHE STROMSPANNUNGEN! KEIN BENUTZER QUGANGLICHE TEILE!

CAUTION!

Group power must be off before installing any Cubix processors, peripheral boards, or third-party peripheral cards. Failure to follow this warning may result in damage to the Density Series system and boards being installed.

BOARD INSTALLATION

The following steps guide through the installation process.

- 1. At the front console, select and turn power off to the group location where you intend to install the server board.
- 2. If a hard-drive is installed in the group hard drive slot, remove the hard drive.
- 3. Confirm the switch and jumper settings are correct on the board being installed.
- 4. Insert the board into the group slot, ensuring the card interface tabs are aligned with the center of the slot (see Figure 7).
- 5. Firmly seat the processor card into the slots by firmly pressing on the top of the card with the palm of your hand.
- 6. Install the hard drive assembly into the appropriate hard drive bay located in the front of the Density enclosure. The hard drive assembly will fit into the hard drive interface. Press firmly to seat.
- 7. Connect all appropriate ribbon connectors and L-bracket connectors.
- 8. At the front of the console, apply power to the processor group.

Figure 7 Inserting Server Board into Chasis Group

APPENDIX A

CUSTOMER SERVICE INFORMATION

For Customer Service Information: 1-800-829-0551

Customer Service available from:

5:00 a.m. to 5:00 p.m. PST Monday through Friday Also, from 8:00 a.m. to 4 p.m. PST on Saturday Closed holidays and holiday weekends

Use the Cubix Web site for trouble-shooting aids and for access to the latest information on Cubix products.

Customer Service Web site: <u>http://www.cubix.com/support</u>

Customer Service Email address: customerservice@cubix.com